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a b s t r a c t

Anomalous heat diffusion, which is commonly characterized by the nonlinear
growth of mean square of displacement (MSD),

⟨
|∆x|2

⟩
∼ tβ(0 < β ≤ 2), is

usually paired with a length-dependence of effective thermal conductivity κeff ,
namely, κeff ∼ Lα with L the system length. In this work, a generic time-
and length-dependence of κeff is obtained based on the fractional Fokker–Planck
equation (FFPE) with orders (γ, µ) ∈ R2, namely, κeff ∝ tγ−1L−µ. Two existing
paradigmatic results, κeff ∝ tβ−1 and κeff ∝ L2−2/β , are first unified in
our work, which reflect memory effects and nonlocality in energy fluctuations,
respectively. We formulate the effective thermal conductivity in terms of entropy
generation, which does not rely on the local-equilibrium hypothesis.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Classical Fourier’s law of heat conduction,

q = −κ∇T, (1.1)

where q = q (x, t) is the local heat flux density, κ is the thermal conductivity and T = T (x, t) is the local
temperature, has been proved by numerous experiments in three-dimensional (3D) bulk materials. However,
its validity is debatable in one-dimensional (1D) and quasi-one-dimensional systems [1,2]. In such cases,
there is no well-defined thermal conductivity and the effective thermal conductivity κeff becomes length-
dependent. The power-law length-dependence, namely, κeff ∼ Lα with L the system length, is commonly
observed, i.e., 1D momentum-conserving systems [3] and the Fermi–Pasta–Ulam (FPU) model [2]. Positive
α will give rise to a sharp enhancement of heat transport with increasing lengths, which is intriguing in
engineering. In a recent experimental investigation by Lee et al. [4], the power-law exponent is reported as
0.1 ≤ α ≤ 0.5. Similar non-universal anomaly was also observed in numerical calculation [5].

One universal approach for predicting α is through anomalous heat diffusion [6–11], which is commonly
characterized by the nonlinear growth of the mean square of displacement (MSD) [12],

⟨
|∆x|2

⟩
∼ tβ

(0 < β ≤ 2). Based on the Lévy-walk (LW) model of anomalous diffusion, Denisov et al. [6] have established
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α = β − 1. This relation is also derived in the framework of the linear response theory [7], which does not
assume any specific random walk model. Relying on the length-dependence of the mean first passage time
(MFPT), Li and Wang [8] acquired a different result, α = 2 − 2/β. There are two different relations, and
whether they can be unified in one generic model remains an open problem. In the following, we will address
this problem based on Fokker–Planck dynamics.

The connection between Fokker–Planck dynamics and heat conduction arises from the governing equation
of Fourier’s law, namely,

LF P [T ] = ∂T

∂t
− D∇2T = 0, (1.2)

where D = κ/c denotes the thermal diffusivity and c is the specific heat capacity per volume. If T is
replaced by the probability distribution function (PDF) P = P (x, t), it becomes the standard Fokker–Planck
equation (FPE) in the absence of an external force field, which describes normal diffusion. Proceeding from
this, the FPE approach, which formulates the continuous-time random walk (CTRW), has been applied to
Fourier and non-Fourier heat conduction. In Dhar’s review article [1], the correlation function of energy
fluctuations Cee = Cee (x, t) is assumed to satisfy LF P [Cee] = 0, which is used to derive the Green–Kubo
formula. The PDF can be defined as the normalization of Cee, and one can obtain LF P [P ] = 0 from Dhar’s
model. Razi-Naqvi and Waldenstrøm [13] considered a non-Markovian FPE for the evolution of T (x, t) in
phonon heat transport, which avoids the artificial wave front in the hyperbolic governing equation [14,15].
Nevertheless, generalized FPEs for anomalous diffusion such as fractional derivatives [16–25], are not much
involved. In the present work, 1D anomalous heat diffusion is investigated by the fractional Fokker–Planck
equation (FFPE) as follows

∂P

∂t
= D1−γ

t

[
K(γ,µ)

∂µ+2P

∂xµ+2

]
, (1.3)

where the orders (γ, µ) ∈ R2 and K(γ,µ) is a generalized diffusion coefficient. Eq. (1.3) can be understood
as a non-Brownian generalization of Dhar’s model, whose long-time asymptotics of the MSD obeys β =
2γ/ (µ + 2). In the following, we will show κeff ∝ tγ−1L−µ, which expects the two scaling laws, α = β − 1
and α = 2 − 2/β, in two special cases respectively.

2. Temporal fractional-order case

Eq. (1.3) can be regarded as a result of the continuity equation
∂P

∂t
+ ∂J

∂x
= 0, (2.1)

and a fractional-order constitutive equation for the probability current J = J (x, t):

J = −K(γ,µ)D
1−γ
t

∂µ+1P

∂xµ+1 . (2.2)

In order to use this constitutive equation in heat conduction, we consider entropy transport and production
based on statistical mechanics. The entropy of a region Π is written as S = kB

∫
Π

−P ln P with kB the
Boltzmann constant. One can thereafter formulate the local entropy density as s = s [P ] = −kBP ln P . The
time derivative of s is written as

∂s

∂t
= −kB (ln P + 1) ∂P

∂t
= kB (ln P + 1) ∂P

∂x

= ∂

∂x
[kBJ (ln P + 1)] − kBJ

∂

∂x
(ln P ) .

(2.3)

The term σ = −kBJ ∂
∂x (ln P ) usually corresponds to the entropy production rate, and the entropy flux

j = j (x, t) can be obtained from the following entropy balance equation
∂s

∂t
= − ∂j

∂x
+ σ, (2.4)
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which leads to
j = −kBJ (ln P + 1) = kB (ln P + 1) K(γ,µ)D

1−γ
t

∂µ+1P

∂xµ+1 . (2.5)

In normal diffusion, (γ, µ) = (1, 0), Eq. (2.5) characterizes entropy transport driven by the entropy gradient,
j = −K(1,0)

∂s
∂x . When (γ, µ) = (γ, 0), a stationary or quasi-stationary P will give rise to the same scheme,

namely,
j (x, t) = −K(γ,0)D

1−γ
t

[
∂s (x)

∂x

]
. (2.6)

In the near equilibrium case, j (x, t) and s (x, t) can be approximated as follows [26], respectively,

s (x, t) ∼=
∫ T (x,t)

c
dT

T
, (2.7)

j (x, t) ∼=
q (x, t)
T (x, t) (2.8)

Combining the above approximations with Eq. (2.6) yields

q (x, t) = −K(γ,0)cD1−γ
t

[
∂T (x)

∂x

]
. (2.9)

There are various mathematical definitions for a fractional-order operator Dµ
χ, and we here consider two

commonly used types, the Riemann–Liouville (RL) operator:

Dµ
χf (., χ) = RL

0 D µ
χf (., χ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ (n − µ)
∂n

∂χn

∫ χ

0

f (., χ)
|χ − χ′|µ+1−n dχ′, µ > 0

1
Γ (−µ)

∫ χ

0

1
|χ − χ′|µ+1 f (., χ) dχ′, µ < 0

, (2.10)

and the Caputo operator:

Dµ
χf (., χ) = C

0 D µ
χf (., χ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ (n − µ)

∫ x

0

1
|χ − χ′|µ+1−n

∂nf (., χ)
∂χ′n dχ′, µ > 0

1
Γ (−µ)

∫ χ

0

1
|χ − χ′|µ+1 f (., χ) dχ′, µ < 0

, (2.11)

where n ∈ N ∩ (µ, µ + 1), µ /∈ N, and the function f (., χ) is at least n-order differentiable. When
D1−γ

t = RL
0 D 1−γ

t , Eq. (2.9) becomes

q (x, t) = −
K(γ,0)ctγ−1

Γ (γ)

[
∂T (x)

∂x

]
, (2.12)

and we arrive at a time-dependent effective thermal conductivity, namely,

κeff ∝ tγ−1 = tβ−1 ∝
d

⟨
|∆x|2

⟩
dt

, (2.13)

which agrees with Ref. [6]. For superdiffusion, γ < 1 and Eq. (2.13) is also true for the Caputo operator. The
subdiffusive regime with γ > 1 indicates negative α, which implies that heat exchange tends to stop. For
the Caputo operator, the subdiffusive heat flux is identically zero, which even exhibits complete “thermal
insulation” in subdiffusive heat diffusion. Therefore, the Caputo operator is inapplicable to subdiffusive heat
conduction.

Eq. (2.12) has been derived from the energy fluctuation in near-equilibrium situations likewise, where the
non-equilibrium heat flux is expressed in terms of the equilibrium autocorrelation function. In this formalism,
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a cut-off time tC is typically introduced,
(

κeff |t=tC

)
∝ tβ−1

C . tC is often estimated as tC ∼ L/vs with vs

the sound velocity. Then, one can acquire the power-law length-dependence α = β − 1 from the temporal
FFPE with the RL operator, while for the Caputo operator, α = β − 1 only holds in superdiffusive heat
conduction. The RL derivative describes memory of the heat carriers that j (x, t) is expressed in terms of
the integrated history of P in a time period [0, t]. Note that Eq. (2.9) relies on time-independent T . If it is
extended into the case of time-dependent T , a fractional heat conduction equation (FHCE) [27] occurs,

∂T

∂t
= K(γ,0)D

1−γ
t

(
∇2T

)
. (2.14)

Eq. (2.14) is a direct generalization of Fourier heat conduction equation, while there likewise exist fractional-
order extensions for the Cattaneo equation [28–31]. The above FHCE is not equivalent to the temporal FFPE
despite the same form, which can be shown by their series expansions. For the temporal FFPE, the series
expansion of Eq. (2.5) is given by

j = −K(γ,0)
RL
0 D 1−γ

t

(
∂s

∂x

)
− kBK(γ,0)

+∞∑
i=1

(−1)i

i!
Γ (i + γ − 1)
Γ (γ − 1)

∂i (ln P )
∂ti

RL
0 D 1−γ−i

t

(
∂P

∂x

)
, (2.15)

while the FHCE corresponds to

j = −K(γ,0)
RL
0 D 1−γ

t

(
∂s

∂x

)
+ K(γ,0)c

+∞∑
i=1

(−1)i

i!
Γ (i + γ − 1)
Γ (γ − 1)

∂i

∂ti

(
1
T

)
RL
0 D 1−γ−i

t

(
∂T

∂x

)
. (2.16)

Eqs. (2.15) and (2.16) have equivalent zero-order terms, but deviate from the other due to the existence of
the higher-order terms. It indicates that the PDF cannot be replaced by the local temperature in the FFPE.

3. Spatial fractional-order case

We now focus on the case (γ, µ) = (1, µ). The range of µ is classified into the following subranges: ballistic
motion, µ = −1; superdiffusion, −1 < µ < 0; normal diffusion, µ = 0; and subdiffusion, µ > 0. Here, the
system is in contact with two heat baths at x = 0 and x = L, whose temperatures T |x=0,L are time-
independent. Without loss of generality, we set T |x=0 − T |x=L = ∆T > 0. If the RL or Caputo operator
is selected, the FFPE reflects a nonlocality for µ /∈ N, namely that the current at x depends on the global
distribution in [0, x]. Obviously, this nonlocality is asymmetrical because the distribution in (x, L] has no
contribution. To reflect an isotropic nonlocality, the Caputo derivative can be naturally symmetrized as
follows

L
0 D µ

xf (., χ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2Γ (n − µ)

∫ L

0

1
|χ − χ′|µ+1−n

∂nf (., χ)
∂χ′n dχ′, µ > 0

1
2Γ (−µ)

∫ L

0

1
|χ − χ′|µ+1 f (., χ) dχ′, µ < 0

. (3.1)

When µ ̸= 0, the right-hand side of Eq. (3.1) is not a derivative of the local entropy, and the approach
for (γ, µ) = (γ, 0) is invalid. Hence we consider a more universal expression for κeff , which is based on
entropy generation. When the total heat exchange is Q, the total entropy input from the heat baths is
given by Q

(
T −1

⏐⏐
x=0 − T −1

⏐⏐
x=L

)
. According to the entropy balance, it should be offset by the total entropy

production
∫
Φdt, namely,

Q

(
1

T |x=0
− 1

T |x=L

)
= −

∫
Φdt. (3.2)

Thereupon, κeff is calculated as

κeff = − qL

∆T
= − L

A∆T

dQ

dt
= ΦL

A

(T |x=0) (T |x=L)
(∆T )2 , (3.3)
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with A the cross-sectional area. The entropy production rate by the FFPE is given by

Φ (µ) = kBK(1,µ)

∫ L

0

(
L
0 D µ+1

x Pµ

) ∂

∂x
(ln Pµ) dx, (3.4)

where Pµ is the stationary or quasi-stationary solution for a given µ. When µ = 0, κeff formulated by
Eq. (3.3) should coincide with Fourier’s law, and we have

κeff

κ
= Φ

Φ (µ = 0) =
K(1,µ)

K(1,0)

∫ L

0
(

L
0 D µ+1

x Pµ

)
∂

∂x (ln Pµ) dx∫ L

0
∂Pµ=0

∂x
∂

∂x (ln Pµ=0) dx
. (3.5)

Set ξ = x/L, and according to the Cauchy mean value theorem, there exists a ξ0 ∈ [0, 1] which fulfills

κeff

κ
= Φ

Φ (µ = 0) =
K(1,µ)

K(1,0)Lµ

⎡⎣
(

L
0 D µ+1

ξ Pµ

)
∂
∂ξ (ln Pµ)

∂Pµ=0
∂ξ

∂
∂ξ (ln Pµ=0)

⎤⎦⏐⏐⏐⏐⏐⏐
ξ=ξ0

. (3.6)

Eq. (3.6) means κeff ∼ L−µ, and upon substituting β = 2/ (µ + 2), we obtain α = 2 − 2/β. For arbitrary
(γ, µ), the above approach can also be adopted,

κeff

κ
=

Φ(γ,µ)

Φ(1,0)
, Φ(γ,µ) = kBK(γ,µ)

∫ L

0

(
RL
0 D 1−γ

t
L
0 D µ+1

x P
) ∂

∂x
(ln P ) dx. (3.7)

Through similar derivations, one can derive κeff ∝ tγ−1L−µ, and if the cut-off tC ∝ L is used, it becomes
κeff ∝ Lγ−µ−1. (γ − µ − 1) can be nonzero when β = 2γ/ (µ + 2) = 1, which enables length-dependent
κeff to coexist with the Brownian MSD

⟨
|∆x|2

⟩
∝ t.

4. Summary

In summary, anomalous heat conduction in the presence of non-Brownian MSD is investigated by the
FFPE with orders (γ, µ), and κeff is derived as κeff ∝ tγ−1L−µ. Two classical relations between the anomaly
κeff = κeff (t, L) and long-time asymptotics

⟨
|∆x|2

⟩
∼ tβ are thus unified: κeff ∝ tβ−1 corresponding to

memory, while κeff ∝ L2−2/β for nonlocality. In Ref. [8], κeff ∝ L2−2/β arises from κeff ∝ L2/tMF P T ,
where tMF P T denotes the MFPT and obeys the scaling tMF P T ∝ L2/β . If we select the MFPT as the cut-off
time in the time-dependence κeff ∝ tβ−1, the time-dependence becomes

(
κeff |t=tC

)
∝ tβ−1

C ∝ L2−2/β . It
agrees with the spatial fractional-order case exactly. Hence, the two different scaling behaviors, κeff ∝ tβ−1

and κeff ∝ L2−2/β , will lead to the same anomaly in the first passage theory. The FFPE predicts
anomalous yet Brownian heat conduction that length-dependent κeff coexists with the Brownian MSD.
Furthermore, the effective thermal conductivity formulated by the entropy production rate does not rely on
local equilibrium or near equilibrium, which is necessary for the conventional linear response theory.
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